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Abstract 

The notion of geometric phase arises in connection with parallel transport in differential geometry and the 

formulation of gauge transformation in field theory. Here we show that the geometric phase is locally 

equivalent to the action of fractional exponential, which is applicable to manifolds having minimal fractal 

topology or for modeling complex phenomena using fractional calculus.  
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1. Introduction 

… 

2. Berry phase in quantum physics 

A quantum system adiabatically transported around a closed path C in the space of 

external parameters acquires a non-integrable phase (Berry phase, BP in short). Since BP 

depends exclusively on the geometry of the path, it provides key insights into the 

geometric structure of quantum mechanics and Quantum Field Theory. The BP concept 

is closely tied to holonomy, that is, the extent to which some of variables change as other 

variables or parameters defining a system return to their initial values [1, 2].  



2 | P a g e  
 

Consider a quantum system described by the time-independent Hamiltonian ( )H t , whose 

associated eigenstate is ( )t  and which is embedded in a slowly changing environment.   

After a periodic evolution of the environmental parameters ( t t T  ), the eigenstate 

returns to itself apart from a phase angle, 

 ( ) (0)it e     (1) 

If   denotes the eigenvalue of ( )t , a generalization of the phase angle T   in units 

of 1  is given by the “dynamical phase” 

 
0 0

( ) ( ) ( ) ( )
T T

d t dt t H t t dt        (2) 

 Berry has shown that there is a time-independent (but contour dependent) supplemental 

“geometric phase” entering the phase angle, namely, 

 ( )d C      (3) 

where 

 ( )
C

C i d    x   (4) 

The dynamical phase d  encodes information about the duration associated with the 

cyclic evolution of the complex vector ( )t  . By contrast, since (4) follows from the 

parallel transport around the closed loop C, it implicitly encodes the geometry of the 

environment where the transport takes place.  
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3. The geometry of gauge and gravitational fields 

The gauge field concept is known to have a deep geometric foundation [3, 4]. In particular, 

all gauge fields A  define parallel transport in internal (charge) space with the field 

strength F  playing the role of curvature tensor. The key point is that, in any spacetime 

or internal space where the coordinates are position-dependent, comparing two vectors 

at different points along a path is meaningless unless one makes use of parallel transport 

or affine connection. Changes in the local frame are compensated by gauge fields in 

internal space or Christoffel symbols in non-Euclidean spacetime. The geometric analogy 

between gauge theory and General Relativity is captured in the table below. 

Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields. 

A helpful illustration of this analogy is offered by the parallel transport of a complex vector 

  round a closed rectangular loop using covariant operators [3, 4]. The difference 

between the value of  at the starting point (
0

 ) and at the end point 
0 f

  is 

given by 

 0f ig S F

           (5) 
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in which S  denotes the area subtended by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
          (6) 

Echoing the formation of the Berry phase, the effect of parallel transport is to induce a 

non-vanishing rotation of  in internal space proportional to the strength of the gauge 

field.    

4. Fractional exponential function 

For a function ( )u R , the fractional Fourier transform of order 0 1   is defined as 

[5] 

 ˆ ( ) ( ) ( , ) ,u u t e t dt   



  R   (7) 

where the kernel functions are 

 

1

1

exp( ), 0
( , )

exp( ), 0

i t
e t

i t






 


 







 



  (8) 

When 1    , 1   the frequency entering (6) takes the form 

 
1 1 (1 )

(1 )
   


    (9) 

leading to a non-vanishing correction to the conventional phase angle given by 

 
ln

( ) (1 ln )F t e t t
 

         (10) 
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The adiabatic condition 1   yields an undefined phase (10), which signal unbounded 

phase fluctuations on all scales and the onset of critical behavior. 

… 

5. Further implications of fractional exponential in field theory 

Significant consequences for Beyond the Standard Model (BSM) physics and ultraviolet 

completion programs. 

- Lie groups and Lie algebra [6] 

Linear representation of a group of elements ( )a    

 ( )Ra D a   (11) 

 ( ( )) exp( )R RD a i T 
    (12) 

- Spin-statistics theorem [7] 

As the wavefunction of a system of n  identical particles stays invariant in modulus, the 

interchange of quantum numbers between the i -th and the j - th particle picks up a non-

vanishing phase according to 

 ( , ) exp(2 ) ( , )i j j iq q i q q      (13) 

The parameter   is defined only modulo integers and fixes the statistics of particles ,i j . 

…. 
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6. Conclusions and outlook. 

… 
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